

NEW CHALLENGES IN PERFORMANCE ENGINEERING

Dr. Amnon Naamad, EMC

Data Center Change Drivers

Older forces

- Cost
- HW improvement
- Data growth
- Consolidation
- Green operations

Newer forces

- Major new innovations
- New use paradigms

Data and Capacity Growth Trends

Period	Capacity Growth	Actual Max Capacities	
1970 – 1990	14X	1.6 GB → 22 GB	
1990 - 2000	90X	22 GB → 2 TB	
2000 - 2010	1000X	2 TB → 2 PB	

Major New Technological Innovations

Flash Drives & Memory

Large, Inexpensive Drives

Server, Storage Virtualization

EFDs#are#in#a#eague#bf#their#Dwn

Significantly More IOPS per Drive at Much Lower Response Time

New Use Paradigms, New Expectations

Cloud & Service Providers

Big Data & Analytics

Globalization

Modeling Has Become Critical

Common sense is insufficient

- Product design
- Product planning/configuration
- Application placement
- TOO MANY LEVERS

Must be right the **first** time

 In consolidated environments, making changes is difficult, risky, and expensive

Performance – More than Speeds & Feeds

THE CHALLENGE:

- How to achieve SLAs efficiently and easily
- Predictability
- High resource utilization
- Appropriate technology
- Performance/application
- Ease of management

Tiered Storage

2008 – Fundamental Storage Media Shift

Disk	Cost/GB	IOPS/GB	Response Time
15 K RPM	1	1	6 ms
Serial ATA (SATA) 7,200 RPM	1/3	1/6	12 ms
Enterprise Flash Drive (EFD)	8	30	< 1 ms

The Tiered Storage Opportunity

BENEFITS	– Costs reduced 30-40%		
	 Response time improved 70% 		
	– Power consumption reduced 60-70%		
	 Management easier with automation 		

Measuring Asymmetry in Access Patterns – Skew

Volume Activity vs Time

One Volume – Address Range Activity vs Time

Challenges for Performance Engineers

Is this opportunity real?

- How many customers can benefit from Automated Tiered Storage?
- Is it worth the effort?
 Estimate the real value.

Come up with effective algorithms

- # of tiers?
- Extent Size?
- When to demote/promote?

Challenges for Performance Engineers

Is this opportunity real?

- How many customers can benefit from Automated Tiered Storage?
- Is it worth the effort?
 Estimate the real value.

Come up with effective algorithms

- # of tiers?
- Extent Size?
- When to demote/promote?

Done Well, Tiered Storage has Great Potential

Possible#fiered#Configurations#

C:\Documents and Se	ttings\ffomin\My Do	cuments\@E/	MC\@2	2010-Projects\Tie	r Advisor\Data re	ceived from the f	ie 💶 🗖 🔀
Name	Rel Cost	Rel ST	Γ	Rel Pwr	EFD	FC	SATA
Ref Config	1	1		1	0%	100%	0%
Proposed	-27%	-47%		-75%	3%	27%	70%
Configuration: Proposed	I			ļ	0/Sec: 31554 BE*	10/Sec: 20230 BE	* Writes (%): 44.9
🔝 Policies: 🛛 🕂 Add Polic	y						🗙 Remove
Disk Utilization Virtual Skew: 93.4% / 6.6% Policy Relative Service Time							
52 Disk E	EFD 200 Utilization	۹	2 1.8				
		0	1.6				
±			8.0 Kervice Time (X) 1.2 1.2 1.0 8 0.0 8				
Throughput			ຍັ1.2 ⊑1				
L L L			.8.0 <u>5</u>				
44.6%							
44			0.4 0.2				
			0				
99.09	6 Capacity			0 10000	—	30000 4000 Sec	0 50000
Deadu							
Ready.	~						

72

More Challenges and Opportunities in Storage Tiering

Proactive management

Less expensive tiers

Application awareness

Tiering among several systems

Server cache integrated with tiered storage

Automatic improvement over time

Predictability vs High Utilization

Predictability requires separation of resources High utilization requires sharing of resources

Dynamic Cache Partitioning

Each application or each user is guaranteed to have a certain portion of the cache

- Only when it needs it

Any application can "donate" cache when it is not active or when it does not benefit from larger cache

Disk QOS is More Challenging

Disks Realities

- Disks can optimize the order in which I/Os are executed
- Optimization is more effective as the queue length increases
- As queue lengths increase, response time increase

The Challenge

 How to configure systems with Response Times and Throughput requirements, and how to set the policy ...

Performance Management

New Expectations and Needs

Performance Management – not just monitoring / Reporting

Automatic Attainment of user-defined goals

- Requires a leap of faith, people need to think differently
- Smart algorithms that allocate resources to achieve these goals are needed
 - Multi dimension dynamic packing
- SLAs from the application perspective
 - How to describe business value, and then translate it to performance goals
 - How to achieve the business goals

Performance Management products should improve automatically over time!!

