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AGENDA  

� Part 1 – Programming with OpenCL 

–  What is OpenCL ? 
–  OpenCL platform, memory and programming models 

–  OpenCL programming walkthrough 
–  Simple OpenCL optimization example 

–  Multidevice Programming 
–  OpenCL Programming on a APU 

–  Details about OpenCL v1.2 
� Part 2 – Multi2Sim 
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OpenCL – Open Computing Language 
Open, royalty-free standard for portable, parallel programming of heterogeneous  parallel computing 

CPUs, GPUs, and other processors 

PROCESSOR PARALLELISM 

CPUs 
Multiple cores driving 

performance increases 

GPUs 
Increasingly general purpose 

data-parallel computing 
Improving numerical precision 

Graphics APIs 
and Shading 
Languages 

Multi-processor 
programming – 

e.g. OpenMP 

Emerging 
Intersection 

OpenCL 
Heterogeneous 

Computing 
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WHAT IS OPENCL ? 

� With OpenCL™ you can� 

–  Leverage CPUs, GPUs, other processors such as Cell. DSPs to accelerate parallel computation 
–  Get dramatic speedups for computationally intensive applications 

–  Write accelerated portable code across different devices and architectures 
–  Royalty free, cross-platform, vendor neutral managed by Khronos OpenCL working group 

� Defined in four parts 
–  Platform Model 

–  Execution Model 
–  Memory Model 

–  Programming Model 
 



5 | ICPE Tutorial  | April 2012 

HOST-DEVICE MODEL (PLATFORM MODEL) 

� The platform model consists of a host connected 
to one or more OpenCL devices 

� A device is divided into one or more compute units 

� Compute units are divided into one or more 
processing elements 

� The host is whatever the OpenCL library runs on   

–  Usually x86 CPUs  
� Devices are processors that the library can talk to  

–  CPUs, GPUs, and other accelerators 
� For AMD  

–  All CPUs are 1 device (each core is a compute 
unit and processing element) 

–  Each GPU is a separate device 
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DISCOVERING PLATFORMS AND DEVICES 

� Obtaining Platform Information 

–  To get the number of platforms available to the 
implementation 

� Obtaining Device Information 

–  Once a platform is selected, we can query for 
the devices present 

–  Specify types of devices interested in (e.g. all 
devices, CPUs only, GPUs only)  

� These functions are called twice each time 

–  First call is to determine the number of 
platforms / devices 

–  Second retrieves platform / device objects 

Get Platform Information 

Get Device Information 
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CONTEXTS 

�  A context is associated with a list of devices 

–  All OpenCL resources will be associated with a 
context as they are created 

� The following are associated with a context 

–  Devices: the things doing the execution 
–  Program objects: the program source that 

implements the kernels 

–  Kernels: functions that run on OpenCL devices 
–  Memory objects: data operated on by the device 

–  Command queues: coordinators of execution of the 
kernels on the devices 

Context 

Empty context xxxtttt 
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CREATING A CONTEXT 

�  This function creates a context given a list of devices 

�  The properties argument specifies which platform to use 
�  The function also provides a callback mechanism for reporting errors to the user  
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CREATING A COMMAND QUEUE 

� By supplying a command queue as an argument, 
the device being targeted can be determined 

� The command queue properties specify: 

–  If out-of-order execution of commands is 
allowed 

–  If profiling is enabled 

� Creating multiple command queues to a device is 
possible 
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MEMORY OBJECTS 

� Memory objects are OpenCL data that can be 
moved on and off devices 

� Classified as either buffers or images 

� Buffers 

–  Contiguous memory – stored sequentially and 
accessed directly (arrays, pointers, structs) 

–  Read/write capable 
� Images 

–  Opaque objects (2D or 3D) 
–  Can only be accessed via read_image() and 

write_image() 

–  Can either be read or written in a kernel, but 
not both  

Context 

Uninitialized OpenCL buffers - original  
data will be transferred to/from these objects 

Original input/output data 
(not OpenCL memory objects) 
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MEMORY OBJECTS 

� Memory objects are associated with a context 

–  They must be explicitly copied to a device prior 
to execution (covered next) 

 

 

� cl_mem_flags specify:  

� Combination of reading and writing allowed on data  
� If the host pointer itself should be used to store the 

data 

� If the data should be copied from the host pointer 

Context 

Uninitialized OpenCL buffers - original  
data will be transferred to/from these objects 

Original input/output  data (not 
OpenCL memory objects) 
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TRANSFERRING DATA 

� OpenCL provides commands to transfer data to and 
from devices  

–  clEnqueue{Read|Write}{Buffer|Image} 

� Objects are transferred to devices by specifying an 
action (read or write) and a command queue 

–  Data moved from host array into OpenCL buffer 

–  Validity of objects on multiple devices is 
undefined by the OpenCL spec (i.e. are vendor 
specific) 

Context 

Written to device 

Images are redundant show that they are part 
of the context and physically on the device 
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TRANSFERRING DATA 

� This command initializes the OpenCL memory object and writes data to the device associated with the 
command queue 

–  The command will write data from a host pointer (ptr) to the device 

� The blocking_write parameter specifies whether or not the command should return before the data transfer 
is complete 

� Events can specify which commands should be completed before this one runs 
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PROGRAMS AND KERNELS 

� A program object is basically a collection of OpenCL 
kernels 

–  Can be source code (text) or precompiled binary 

–  Can also contain constant data and auxiliary 
functions 

� Creating a program object requires either reading in a 
string (source code) or a precompiled binary 

–  A program object is created by selecting which 
devices to target 

Context 

OpenCL Program p
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CREATING A PROGRAM 

� This function creates a program object from strings of source code 

–  count specifies the number of strings 
–  The user must create a function to read in the source code to a string 

–  Programmer can pass in compiler flags (optional) 
� The lengths fields are used to specify the string lengths 
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BUILDING A PROGRAM 

� This function compiles and links an executable from the program object for each device in the context 

–  Program is compiled for each device 
–  If device_list is supplied, then only those devices are targeted 

� Optional preprocessor, optimization, and other options can be supplied by the options argument    

� Compilation failure is determined by an error value returned from clBuildProgram() 
� clGetProgramBuildInfo() with the program object and the parameter CL_PROGRAM_BUILD_STATUS 

returns a string with the compiler output 
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CREATING A KERNEL 

� A kernel is a function declared in a program that is 
executed on an OpenCL device 

–  A kernel object is a kernel function along with its 
associated arguments 

–  A kernel object is created from a compiled 
program object by specifying the name of the 
kernel function 

–  The kernel is created is specified by a string that 
matches the name of the function within the 
program 

� Must explicitly associate arguments (memory 
objects, primitives, etc.) with the kernel object 

Context 

Kernels s 
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SUMMARIZING RUNTIME COMPILATION 

� Runtime compilation is necessary due to the range of devices from different vendors 

� There is a high overhead for compiling programs and creating kernels  
–  Each operation only has to be performed once (at the beginning of the program) 

–  The kernel objects can be reused any number of times by setting different arguments 

clCreateProgramWithSource() 

clCreateProgramWithBinary()  

clBuildProgram()  clCreateKernel()  

Read source code 
into char array 
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PROGRAMMING MODEL 

�  Data parallel 

–  One-to-one mapping between work-items and elements in a memory object 
–  Work-groups can be defined explicitly (like CUDA) or implicitly (specify the number of work-items and 

OpenCL creates the work-groups) 

�  Task parallel 
–  Kernel is executed independent of an index space 

–  Other ways to express parallelism: enqueueing multiple tasks to the device, 
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A SCALABLE THREAD STRUCTURE 

� Each thread is responsible for adding the indices corresponding to its ID 

� Each instance of a kernel is called a work-item (though “thread” is commonly used as well) 
� Work-items are organized as work-groups 

–  Work-groups are independent from one-another (this is where scalability comes from) 

Thread structure: 
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THREAD STRUCTURE 

� An index space defines a hierarchy of work-groups and work-items 

� Work-items can uniquely identify themselves based on: 
–  A global id (unique within the index space) 

–  A work-group ID and a local ID within the work-group 
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MEMORY MODEL 

Memory� Description�

Global� Accessible by all work-items�

Constant� Read-only, global�

Local� Local to a work-group�

Private� Private to a work-item�

� The OpenCL memory model is closely related 
to a real GPU memory hierarchy 

SIMD Engine  
LDS, Registers 

Compute Unit to Memory X-bar 

Global Memory 

L1 Cache 

L2 Cache Write Cache 

Atomic Path 
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THE OPENCL KERNEL�FINALLY 

� Memory Space Qualifiers 

__global – memory allocated from global space 
__constant – a special type of read-only memory 

__local – memory shared by a work-group 
__private – private per work-item memory 

__read_only /__write_only – used for images 
 

� Kernel arguments that are memory objects must be 
global, local, or constant 

� Kernels execute asynchronously from the host 

� Synchronization   
–  Between items in a work-group 

–  Between commands in a command queue 

//Simple vector addition kernel: 
 
__kernel 
void vecadd(   __global int* A, 
                  __global int* B, 
                  __global int* C)  
{ 
   int tid = get_global_id(0); 
   C[tid] = A[tid] + B[tid]; 
} 
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MEMORY MODEL 

� Memory management is explicit  

–  Must move data from host to device global 
memory, from global memory to local memory, 
and back 

� Work-groups are assigned to execute on compute-
units 

–  No guaranteed communication/coherency 
between different work-groups  

� Memory is made up of banks  

–  Memory banks are the hardware units that 
actually store data 

0 
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SETTING KERNEL ARGUMENTS 

� Each call provides the index of the argument as in the function signature, size, and a pointer to the data 

� Examples: 
–  clSetKernelArg(kernel, 0, sizeof(cl_mem), (void*)&d_iImage); 

–  clSetKernelArg(kernel, 1, sizeof(int), (void*)&a); 
� CUDA avoids this by using a preprocessor 

Context 

Kernels args are set 

* Step 8 
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EXECUTING THE KERNEL 

� A thread structure defined by the index-space that 
is created 

–  Each thread executes the same kernel on 
different data 

Context 

An index space of threads is 
created (dimensions match 
the data ) 
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COPYING DATA BACK 

� The last step is to copy the data back from the 
device to the host 

� Similar call as writing a buffer to a device, but 
data will be transferred back to the host 

Context 

Copied back 
from GPU 
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BIG PICTURE 
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EXAMPLE 1 - IMAGE ROTATION 

� A common image processing routine  

� Applications in matching, alignment, etc. 
� New coordinates of point (x1,y1) when rotated  by an 

angle Θ around (x0,y0) 

� By rotating the image about the origin (0,0) we get  

� Each coordinate for every point in the image can be 
calculated independently 

x2 = cos(θ) * (x1 − x0) − sin(θ) * (y1 − y0) + x0
y2 = sin(θ) * (x1 − x0) + cos(θ) * (y1 − y0) + x0

x2 = cos(θ) * (x1) − sin(θ) * (y1)
y2 = sin(θ) * (x1) + cos(θ) * (y1)

Original Image 

Rotated Image (90o) 
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IMAGE ROTATION 

� Input: To copy to device 

–  Image (2D Matrix of floats) 
–  Rotation parameters 

–  Image dimensions 
� Output: From device 

–  Rotated Image 
� Main Steps 

–  Copy image to device by enqueueing a write to a 
buffer on the device from the host 

–  Run the Image rotation  kernel on input image 

–  Copy output image to host by enqueueing a read 
from a buffer on the device 
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THE OPENCL KERNEL 

� Parallel portion of the algorithm off-loaded to device 

–  Most thought provoking part of coding process 
� Steps to be done in Image Rotation kernel 

–  Obtain coordinates of work item in work group 
–  Read rotation parameters 

–  Calculate destination coordinates 
–  Read input and write rotated output at calculated coordinates 

� Parallel kernel is not always this obvious.  
–  Profiling is often necessary to find the bottlenecks and locate the data parallelism 

–  In this example grid of output image decomposed into work items  
–  Not all parts of the input image copied to the output image after rotation, corners of I/P image could be 

lost after rotation 
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OPENCL KERNEL 

__kernel  void image_rotate( 
   __global float * src_data, __global float * dest_data, //Data in global memory 
   int W,    int H,    //Image Dimensions 
    float sinTheta, float cosTheta )   //Rotation Parameters 
{     
  //Thread gets its index within index space 
  const int ix = get_global_id(0);  
  const int iy = get_global_id(1);     
 
  //Calculate location of data to move into ix and iy – Output decomposition as mentioned 
  float xpos = (  ((float) ix)*cosTheta + ((float)iy )*sinTheta);     
  float ypos = (  ((float) iy)*cosTheta -  ((float)ix)*sinTheta);  
 
  if (( ((int)xpos>=0) && ((int)xpos< W)))  //Bound Checking  

  && (((int)ypos>=0) && ((int)ypos< H)))   
  { 
       //Read (xpos,ypos) src_data and store at (ix,iy) in dest_data 
       dest_data[iy*W+ix] =  src_data[(int)(floor(ypos*W+xpos))];  
   } 
} 
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STEP0: INITIALIZE DEVICE 

� Declare context  

� Choose a device from context 

� Using device and context create a  command queue 

cl_context myctx = clCreateContextFromType(
  0, CL_DEVICE_TYPE_GPU,   
  NULL, NULL, &ciErrNum); 

cl_command_queue myqueue ; 
myqueue = clCreateCommandQueue(  

 myctx, 
 device, 0, &ciErrNum); 

ciErrNum = clGetDeviceIDs(
 0,CL_DEVICE_TYPE_GPU,  
 1, &device,  cl_uint *num_devices) 

Query Platform 

Query Devices 

Command Queue 

Create Buffers 

Compile Program 

Compile Kernel 
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Set Arguments 
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STEP1: CREATE BUFFERS 

� Create buffers on device 

� Input data is read-only 
� Output data is write-only 

� Transfer input data to the devicea 

cl_mem d_ip = clCreateBuffer( myctx, 
 CL_MEM_READ_ONLY, mem_size,  NULL, 
 &ciErrNum); 

ciErrNum = clEnqueueWriteBuffer( 
 myqueue , d_ip, CL_TRUE,
 0,mem_size, (void *)src_image,
 0, NULL,  NULL) 

cl_mem d_op = clCreateBuffer( myctx, 
 CL_MEM_WRITE_ONLY, mem_size,  NULL, 
 &ciErrNum); 

Query Platform 

Query Devices 

Command Queue 
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STEP2: BUILD PROGRAM, SELECT KERNEL 

// Create the program    
cl_program myprog= clCreateProgramWithSource

 ( myctx,1, (const char **)&source, 
 &program_length, &ciErrNum); 

// Build the program     
ciErrNum = clBuildProgram( myprog, 0,  NULL,  

 NULL, NULL, NULL); 

// The “image_rotate” function as the kernel  
cl_kernel mykernel = clCreateKerne( myprog , 

 “image_rotate” , error_code) 

Query Platform 

Query Devices 

Command Queue 

Create Buffers 
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// Set Arguments 
clSetKernelArg(mykernel, 0, sizeof(cl_mem), 

  (void *)&d_ip);  
clSetKernelArg(mykernel, 1, sizeof(cl_mem),  

 (void *)&d_op); 
 clSetKernelArg(mykernel, 2, sizeof(cl_int), 

 (void *)&W); 
 
//Set local and global workgroup sizes 
size_t localws[2] = {16,16} ; 
//Assume divisible by 16  
size_t globalws[2]={W, H}; 
 
// execute kernel 
clEnqueueNDRangeKernel(  myqueue , myKernel,  

 2, 0, globalws, localws,  
 0, NULL, NULL); 

STEP3: SET ARGUMENTS, ENQUEUE KERNEL 

// Set Arguments 
clSetKernelArg(mykernel, 0, sizeof(cl_mem), 

 (void *)&d_ip);  
clSetKernelArg(mykernel, 1, sizeof(cl_mem),  

(void *)&d_op); 
clSetKernelArg(mykernel, 2, sizeof(cl_int), 

(void *)&W); 

//Set local and global workgroup sizes 
size_t localws[2] = {16,16} ; 
//Assume divisible by 16  
size_t globalws[2]={W, H}; 

// execute kernel 
clEnqueueNDRangeKernel(  myqueue , myKernel,  

2, 0, globalws, localws,  
0, NULL, NULL); 
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STEP4: READ BACK RESULT 

� Only necessary for data  required on the host 

� Data output from one kernel can be reused for 
another kernel  

� Avoid redundant host-device IO 

// copy results from device back to host 
clEnqueueReadBuffer( 

 myctx, d_op,  
 CL_TRUE, //Blocking Read Back 
 0, mem_size,(void *) op_data,
 NULL, NULL, NULL); 
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OPENCL TIMING 

� OpenCL provides “events” which can be used for 
timing kernels 

� We pass an event to the OpenCL enqueue kernel 
function to capture timestamps 

� Code snippet provided can be used to time a 
kernel 

� Add profiling enable flag to create command 
queue   

� By taking differences of the start and end 
timestamps we discount  overheads like time 
spent in the command queue 

clGetEventProfilingInfo( event_time,  
 CL_PROFILING_COMMAND_START,  
 sizeof(cl_ulong),&starttime, NULL); 

clGetEventProfilingInfo(event_time, 
 CL_PROFILING_COMMAND_END,  
 sizeof(cl_ulong), &endtime, NULL); 

unsigned long elapsed =   
(unsigned long)(endtime - starttime); 

cl_event event_timer; 
clEnqueueNDRangeKernel(myqueue , 

 myKernel,2, 0, globalws, localws,  
          0, NULL, &event_timer); 

unsigned long starttime, endtime; 
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OPENCL OPTIMIZATION - THREAD MAPPING 

� Thread mapping determines which threads will access which data 

–  Proper mappings can align with hardware and improve performance 
–  Improper mappings can be disastrous to performance 

� Using mappings, the same thread can be assigned to access different data 
elements 

–  Examples below show three different possible mappings of threads to 
data (assuming the thread id is used to access an element) 
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Thread IDs 

Mapping 

int tid =  
get_global_id(1) *  
get_global_size(0) +  
get_global_id(0); 
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get_global_id(0) *  
get_global_size(1) +  
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int group_size =  
get_local_size(0) * 
get_local_size(1); 
 
int tid =  
get_group_id(1) * 
get_num_groups(0) * 
group_size + 
get_group_id(0) * 
group_size +  
get_local_id(1) * 
get_local_size(0) +   
get_local_id(0) 
 

*assuming 2x2 groups 
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THREAD MAPPING 

� Consider a serial matrix multiplication algorithm 

 

 
� This algorithm is suited for output data decomposition 

–  We will create NM threads  - effectively removing the outer two loops 
–  Each thread will perform P calculations - The inner loop will remain as part of the kernel 

� Should the index space be MxN or NxM? 
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THREAD MAPPING 

� Thread mapping 1: with an MxN index space, the kernel would be: 

� Thread mapping 2: with an NxM index space, the kernel would be: 

 
� Both mappings produce functionally equivalent versions of the program 
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THREAD MAPPING 

� This figure shows the execution of the two thread 
mappings on NVIDIA GeForce 285 and 8800 
GPUs 

 

� Notice that mapping 2 is far superior in 
performance for both GPUs 
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SO FAR 

� We know how to optimize a program in OpenCL by taking advantage of the underlying architecture 

� We have seen how to utilize threads to hide latency 

� We have also seen how to take advantage of the different memory spaces available in today’s GPUs. 
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N-BODY ALGORITHMS 

� The gravitational attraction between two bodies in space 
is an example of an N-body problem 

–  Body represents a galaxy / star, and bodies attract 
each other through gravitational force 

–  Bodies attract each other through force (F) 
� O(N2) algorithm:  N*N interactions need to be calculated 

� All-pairs technique is used to calculate close-field forces 
 

  

F = G *
mi * m j

|| rij ||2
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ *

rij
|| rij ||

F =  Resultant Force Vector between particles i and j
G =  Gravitational Constant
mi =  Mass of particle i
m j =  Mass of particle j

rij =  Distance of particle i and j

For each particle this becomes

Fi = (G * mi) *
m j

|| rij ||2
*

rij
|| rij ||

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

j=1→N

∑

for(i=0; i<n; i++) {   
    ax = ay = az = 0; 
   // Loop over all particles "j”  
    for ( j=0; j<n; j++)  { 
 
         //Calculate Displacement 

 dx=x[j]-x[i]; 
 dy=y[j]-y[i]; 
 dz=z[j]-z[i]; 

 
 // small eps is delta added for dx,dy,dz = 0 
 invr= 1.0/sqrt(dx*dx+dy*dy+dz*dz +eps); 
 invr3 = invr*invr*invr; 
 f=m[ j ]*invr3; 

 
 // Accumulate acceleration  
 ax += f*dx;  
 ay += f*dy; 
 az += f*dx; 

    } 
   // Use ax, ay, az to update particle posit ions 
} 
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N-BODY ALGORITHMS 

� For large counts, the N2 method calculates of force 
contribution of distant particles  

–  Distant particles hardly affect resultant force 

� Algorithms like Barnes Hut reduce number of 
particle interactions calculated 

–  Nearby cells treated individually  

–  Distant cells treated as a single large particle 
� We restrict ourselves to a simple all pair simulation 

of particles with gravitational forces 

–  Near field still uses all pairs 
–  So, implementing all pairs improves both near 

and far field calculations 

� Volume divided into cubic cells in an octree 

� A  octree is a tree where a node has exactly 8 
children 

� Used to subdivide a 3D space 
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PARALLEL IMPLEMENTATION 

� Embarrassingly parallel algorithm 

� Forces of each particle can be computed 
independently 

� Accumulate results in local memory  

� Add accumulated results to previous position of 
particles 

� New position used as input to the next time step to 
calculate new forces acting between particles 

N

N  

Force between all 
particles  

NNNNNNNNNNNN

Resultant force 
– per particle 

N = No. of particles in system 

s   per part

Next Iteration 
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NAÏVE PARALLEL IMPLEMENTATION 

� Disadvantages of implementation where each 
work item reads data independently 

� No reuse since redundant reads of parameters for 
multiple work-items 

� Memory  access= N reads*N threads=  N2 
� Similar to naïve non blocking matrix multiplication 

__kernel void nbody(  
 __global float4 * initial_pos, 
 __global float4 * final_pos, 
 Int N, __local float4 * result) { 

 
    int localid = get_local_id(0); 
    int globalid = get_global_id(0); 
    result [localid] = 0; 
 
    for( int i=0 ; i<N;i++)  { 
     //! Calculate interaction between  
     //! particle globalid and particle i     
     GetForce( globalid, i, initial_pos, final_pos, 

 &result [localid]) ; 
     } 
     finalpos[ globalid] = result[ localid]; 
} 

p items /
workgroup 

N = No. of particles 
All N particles read in by each work item 
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LOCAL MEMORY OPTIMIZATIONS 

� Data Reuse 

–  Any particle read into compute unit can be 
used by all p bodies 

� Computational tile: 

–  Square region of the grid of forces consisting 
of size p 

–  2p forces required to evaluate all p2 
interactions in tile 

� p work items (in vertical direction) read in p forces 

� Interactions on p bodies captured as an update to 
p acceleration vectors 

� Intra-work group synchronization shown in orange 
required since all work items use data read by 
each work item 

p 

p items per 
workgroup 

p forces read into local memory 

p

p 

tile0 tile1 

p 

tile N/p 

p 

tile0 tile1 

p 

tile N/p t
p

p

p p 
N

/p
  w

or
k 

gr
ou
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OPENCL IMPLEMENTATION 

� Data reuse using local memory  

–  Without reuse N*p items read per work group 
–  With reuse p*(N/p) = N items read per work 

group 

� All work items use data read in by each work item 
–  SIGNIFICANT improvement: p is work group 

size (at least 128 in OpenCL, discussed in 
occupancy) 

–  Loop nest shows how a work item traverses all 
tiles 

–  Inner loop accumulates contribution of all 
particles within tile 

for (int i = 0; i < numTiles; ++i)  { 
        // load one tile into local memory 
        int idx = i * localSize + tid; 
        localPos[tid] = pos[idx]; 
 
       barrier(CLK_LOCAL_MEM_FENCE); 
 
       // calculate acceleration effect due to each body 
      for( int j = 0; j < localSize; ++j )     { 
            // Calculate acceleration caused by particle j on i 
            float4 r = localPos[j] – myPos; 
 
            float distSqr = r.x * r.x  +  r.y * r.y  +  r.z * r.z; 
            float invDist = 1.0f / sqrt(distSqr + epsSqr); 

  float s = localPos[j].w * invDistCube; 
 
            // accumulate effect of all particles 
            acc += s * r; 
        } 
        // Synchronize so that next tile can be loaded 
        barrier(CLK_LOCAL_MEM_FENCE); 
    } 
} 
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PERFORMANCE 

� Effect of optimizations compared for two GPU platforms 

–  Exactly same code, only recompiled for platform 
� Devices Compared 

–  AMD GPU 5870 
–  Nvidia GPU GTX 480 

� Time measured for OpenCL kernel using OpenCL event counters 
–  Device IO and other overheads like compilation time are not relevant to our discussion of optimizing a 

compute kernel 

–  Events are provided in the OpenCL spec to query obtain timestamps for different state of OpenCL 
commands 
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EFFECT OF REUSE ON KERNEL PERFORMANCE 
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PERFORMANCE - LOOP UNROLLING  

� We also attempt loop unrolling of the reuse local memory implementation 

–  We unroll the innermost loop within the thread 
� Loop unrolling can be used to improve performance by removing overhead of branching 

–  Beneficial only for tight loops where branching overhead is comparable to the size of the loop body 
–  Experiment on optimized local memory implementation 

–  Executable size is not a concern for GPU kernels 
� We implement unrolling by factors of 2 and 4 and we see substantial performance gains across platforms 

–  Decreasing returns for larger unrolling factors seen 
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EFFECT OF UNROLL ON KERNEL PERFORMANCE 
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int main(void) { 
try { 
  cl::Context context (CL_DEVICE_TYPE_GPU, 0, NULL, NULL, &err); 
  cl::vector<cl::Device> devices = context.getInfo<CL_CONTEXT_DEVICES>();   
  cl::Program::Sources source(1, std::make_pair(helloStr,strlen(helloStr))); 
  cl::Program program_ = cl::Program(context, source); 
  program_.build(devices); 
  cl::Kernel kernel(program_, "hello", &err); 
  cl::CommandQueue queue(context, devices[0], 0, &err); 
  cl::KernelFunctor func = kernel.bind(queue, cl::NDRange(4, 4), 
  cl::NDRange(2, 2)); 
  func().wait(); 
}  
catch (cl::Error err) { 
  std::cerr << "ERROR: " << err.what() << "(" << err.err() << ")“ << 
  std::endl; 
} 
return EXIT 
} 

OPENCL C++ API 

� C++ Bindings provide 

–  Abstractions 
–  Object oriented progamming 

–  Templates 
� Lightweight, providing access to the 

low-level features of the original 
OpenCL™ C API 

� Compatible with standard C++ 
compilers (GCC 4.x and VS 2008) 
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EXTENSIONS TO OPENCL 

� An OpenCL Extension is a feature, which might be supported by a device but is not a part of the OpenCL 
specification   

–  Extensions allow vendors to expose device specific features without being concerned about 
compatibility with specification and other vendor features  

� Check clGetDeviceInfo with CL_DEVICE_EXTENSIONS 

 
� Atomic functions to global and local memory 

–   add, sub, xchg, inc, dec, cmp_xchg, min, max, and, or, xor 
–   32-bit/64-bit integers 

� Byte Addressable Stores 
� Device Fission – Allows splitting up a compute device into multiple subdevices 

� Media operations 

#pragma OPENCL EXTENSION extension_name : enable  
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APPROACHES TO MULTIPLE DEVICES 

� Single context, multiple devices 

–  Standard way to work with multiple devices in OpenCL 
–  Associating specific devices with a context is done by passing a list of the desired devices to 
clCreateContext() 

–  The call clCreateContextFromType() takes a device type (or combination of types) as a 
parameter and creates a context with all devices of that type: 

� Multiple contexts, multiple devices - Computing on a cluster, multiple systems, etc. 
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SINGLE CONTEXT, MULTIPLE DEVICES 

� When multiple devices are part of the same context, 
most OpenCL objects are shared 

–  Memory objects, programs, kernels, etc. 

� One command queue must exist per device and is 
supplied in OpenCL when the target GPU needs to be 
specified 

–  Any clEnqueue* function takes a command queue 
as an argument 

Context 
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SINGLE CONTEXT, MULTIPLE DEVICES 

� Memory objects are common to a context, they must be explicitly written to a device before being used  

–  Whether or not the same object can be valid on multiple devices is vendor specific 
� OpenCL does not assume that data can be transferred directly between devices, so commands only exists 

to move from a host to device, or device to host 

–  Copying from one device to another requires an intermediate transfer to the host 

Context 

0) Object starts on device 0 

1) clEnqueueRead*(cq0, ...) 
copies object to host 

3) clEnqueueWrite*(cq1, ...) 
copies object to device 1 

2) Object now valid on host 

4) Object ends up on device 1 

.) )

2) Object now valid

TWO PCIe DATA TRANSFERS 
ARE REQUIRED 
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SINGLE CONTEXT, MULTIPLE DEVICES 

� The behavior of a memory object written to multiple devices is vendor-specific 

� OpenCL does not define if a copy of the object is made or whether the object remains valid once written to 
a device 

� A CPU would operate on a memory object in-place, while a GPU would make a copy (so the original would 
still be valid until it is explicitly written over) 

� AMD/NVIDIA implementations allow an object to be copied to multiple devices 

–  Programmer responsible for maintaining updated copy and merging data 

Context 

clEnqueueWrite*(cq0, ...) clEnqueueWrite*(cq1, ...) 

When writing data to a GPU, a copy is 
made, so multiple writes are valid  



60 | ICPE Tutorial  | April 2012 

SINGLE CONTEXT, MULTIPLE DEVICES 

� Just like writing a multi-threaded CPU program, we have two choices for designing multi-GPU programs 

1.  Redundantly copy all data and index using global offsets 
 

 

2.  Split the data into subsets and index into the subset 

A0 

A A 

0 1 2 3 Threads 4 5 6 7 

0 1 2 3 Threads 

0 1 2

A

3 4 5 6 7

A 

0

A

1

A0 
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A1 
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A

1

A1 

2 3

GPU 0 GPU 1 

GPU 0 GPU 1 
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SINGLE CONTEXT, MULTIPLE DEVICES 

� OpenCL provides mechanisms to help with both multi-device techniques 

–  clEnqueueNDRangeKernel() optionally takes offsets that are used when computing the global ID 
of a thread 
� Note that for this technique to work, any objects that are written to will have to be synchronized manually 

–  SubBuffers were introduced in OpenCL 1.1 to allow a buffer to be split into multiple objects 
� This allows reading/writing to offsets within a buffer to avoid manually splitting and recombining data 

� OpenCL events are used to synchronize execution on different devices within a context 
� clEnqueue* function generates an event that identifies the operation 

� clEnqueue* functions also take an optional list of events that must complete before that operation should 
occur 

� clEnqueueWaitForEvents() is the specific call to wait for a list of events to complete 
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SYNCHRONIZATION BETWEEN COMMAND QUEUES 

� individual queue can execute in order or out of 
order 

–  In-order queue, all commands execute in order 

–  Behaves as expected (as long as you’re 
enqueuing from one thread) 

� Multiple Queues 

–  You must explicitly synchronize between 
queues 

–   Multiple devices each have their own queue 

�  Use events to synchronize 

� clWaitForEvents(num_events, *event_list) 

–  Blocks until events are complete 
� clEnqueueMarker(queue, *event) 

–  Returns an event for a marker that moves 
through the queue 

� clEnqueueWaitForEvents(queue, num_events, 
*event_list) 

–  Inserts a “WaitForEvents” into the queue 
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MULTIPLE CONTEXTS, MULTIPLE DEVICES 

� An alternative approach is to create multiple OpenCL contexts (with associated objects) per device 

� Distributed programming 
–  If a framework such as MPI is used for communication, programs can be ran on multi-device machines 

or in distributed environments 

–  Host libraries (e.g., pthreads, MPI) must be used for synchronization and communication 
� In addition to PCI-Express transfers required to move data between host and device, extra memory and 

network communication may be required 

rial  | April 2012 

Context Context 
Communicate using host-based libraries 
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PROGRAMMING SHARED MEMORY HETEROGENEOUS DEVICES 

� Memory space subdivided into “System Memory” and 
“Local Memory” 

–  Local memory: regions optimized for high 
bandwidth GPU accesses,  driver managed 

� Unified North Bridge arbitrates access 
� clCreateBuffer calls allocate memory in either “System 

Memory” or “Local Memory” 

–  Memory region defined by cl_mem_flags parameter 
� Llano APUs provides different performance for each 

device based on regions used 

–  To access Local memory from CPU 

MEMORY SYSTEM ON FUSION APUS -  
Pierre Boudier & Graham Sellers.  
AMD Fusion Developer Summit 2011 

clCreateBuffer( myctx, 
CL_MEM_READ_ONLY|CL_MEM_USE_PERSISTENT_MEM_AMD, 
mem_size,  NULL, &ciErrNum); 
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PROGRAMMING SHARED MEMORY HETEROGENEOUS DEVICES 

clCreateBuffer( myctx, 
CL_MEM_READ_ONLY | 
CL_MEM_ALLOC_HOST_PTR, 
mem_size,  NULL, &ciErrNum); 

clCreateBuffer( myctx, 
CL_MEM_READ_WRITE |   
CL_MEM_ALLOC_HOST_PTR, 
mem_size,  NULL, &ciErrNum); 

GPU / CPU access to uncached system memory GPU access to cached system memory 
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OPENCL V1.2 - DIFFERENCES 

� Device partitioning:  

–  Partition a device into sub-devices so that work groups can be allocated to individual compute units. 
–  Useful for reserving areas of the device to reduce latency for time-critical tasks. 

� Separate compilation and linking of objects:  
–  Functionality to compile OpenCL into external libraries for inclusion into other programs. 

� Enhanced image support:   
–  Support for 1D images and 1D/2D image arrays.  

–  Extensions allow for OpenGL textures and arrays to be used to create OpenCL images 
� Built-in kernels: 

–  Custom devices that contain unique functionality are now integrated more closely into OpenCL 
–  Kernels can be called to use specialised or non-programmable aspects of underlying hardware.  

–  Examples include, video encoding/decoding, and digital signal processors. 
� DirectX functionality: DX9 media surface sharing allows for efficient sharing between OpenCL and DX9 
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CONCLUSIONS ON HETEROGENEOUS COMPUTING 

� Targeting heterogeneous devices (e.g., CPUs and 
GPUs at the same time) requires awareness of their 
different performance characteristics for an application 

� Scheduling overhead  

–  What is the startup time of each device? 
� Location of data  

–  Which device is the data currently resident on? 
–  Data must be transferred across the PCI-Express 

bus 

� Subdivision granularity of workloads across devices ? 
–  Too large may execute slowly on a device, stalling 

overall completion 

–  Too small may be dominated by startup overhead 

Context 

CPUs GPUs 

Overhead Low High (depending on data) 

Performance Variable High 
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RELEVANT RESOURCES FOR OPENCL 

� Books 

–  Heterogenous Computing with OpenCL 
–  OpenCL Programming Guide 

� Tutorial on Fusion Memory model 
–  MEMORY SYSTEM ON FUSION APUS -  Pierre Boudier & Graham Sellers.  AMD Fusion 

Developer Summit 2011 

� Webinars. Lectures 
–  AMD OpenCL University Toolkit  

–  http://developer.amd.com/zones/OpenCLZone/Events/pages/
OpenCLWebinars.aspx 

� Debugging 

–  GDEbugger  - Windows Only 
� Systems to test 

–  NUCAR provides systems to test and run OpenCL code. Contact Prof. Kaeli 



THANK YOU !! 
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