
PROGRAMMING AND SIMULATING
HETEROGENEOUS DEVICES - OPENCL
AND MULTI2SIM

Rafael Ubal, Dana Schaa, Perhaad Mistry, David Kaeli
Department of Electrical and Computer Engineering
Northeastern University
Boston, MA

ICPE 2012 – Boston, MA

2 | ICPE Tutorial | April 2012

AGENDA

� Part 1 – Programming with OpenCL

–  What is OpenCL ?
–  OpenCL platform, memory and programming models

–  OpenCL programming walkthrough
–  Simple OpenCL optimization example

–  Multidevice Programming
–  OpenCL Programming on a APU

–  Details about OpenCL v1.2
� Part 2 – Multi2Sim

3 | ICPE Tutorial | April 2012

OpenCL – Open Computing Language
Open, royalty-free standard for portable, parallel programming of heterogeneous parallel computing

CPUs, GPUs, and other processors

PROCESSOR PARALLELISM

CPUs
Multiple cores driving

performance increases

GPUs
Increasingly general purpose

data-parallel computing
Improving numerical precision

Graphics APIs
and Shading
Languages

Multi-processor
programming –

e.g. OpenMP

Emerging
Intersection

OpenCL
Heterogeneous

Computing

4 | ICPE Tutorial | April 2012

WHAT IS OPENCL ?

� With OpenCL™ you can�

–  Leverage CPUs, GPUs, other processors such as Cell. DSPs to accelerate parallel computation
–  Get dramatic speedups for computationally intensive applications

–  Write accelerated portable code across different devices and architectures
–  Royalty free, cross-platform, vendor neutral managed by Khronos OpenCL working group

� Defined in four parts
–  Platform Model

–  Execution Model
–  Memory Model

–  Programming Model

5 | ICPE Tutorial | April 2012

HOST-DEVICE MODEL (PLATFORM MODEL)

� The platform model consists of a host connected
to one or more OpenCL devices

� A device is divided into one or more compute units

� Compute units are divided into one or more
processing elements

� The host is whatever the OpenCL library runs on

–  Usually x86 CPUs
� Devices are processors that the library can talk to

–  CPUs, GPUs, and other accelerators
� For AMD

–  All CPUs are 1 device (each core is a compute
unit and processing element)

–  Each GPU is a separate device

6 | ICPE Tutorial | April 2012

DISCOVERING PLATFORMS AND DEVICES

� Obtaining Platform Information

–  To get the number of platforms available to the
implementation

� Obtaining Device Information

–  Once a platform is selected, we can query for
the devices present

–  Specify types of devices interested in (e.g. all
devices, CPUs only, GPUs only)

� These functions are called twice each time

–  First call is to determine the number of
platforms / devices

–  Second retrieves platform / device objects

Get Platform Information

Get Device Information

7 | ICPE Tutorial | April 2012

CONTEXTS

�  A context is associated with a list of devices

–  All OpenCL resources will be associated with a
context as they are created

� The following are associated with a context

–  Devices: the things doing the execution
–  Program objects: the program source that

implements the kernels

–  Kernels: functions that run on OpenCL devices
–  Memory objects: data operated on by the device

–  Command queues: coordinators of execution of the
kernels on the devices

Context

Empty context xxxtttt

8 | ICPE Tutorial | April 2012

CREATING A CONTEXT

�  This function creates a context given a list of devices

�  The properties argument specifies which platform to use
�  The function also provides a callback mechanism for reporting errors to the user

9 | ICPE Tutorial | April 2012

CREATING A COMMAND QUEUE

� By supplying a command queue as an argument,
the device being targeted can be determined

� The command queue properties specify:

–  If out-of-order execution of commands is
allowed

–  If profiling is enabled

� Creating multiple command queues to a device is
possible

10 | ICPE Tutorial | April 2012

MEMORY OBJECTS

� Memory objects are OpenCL data that can be
moved on and off devices

� Classified as either buffers or images

� Buffers

–  Contiguous memory – stored sequentially and
accessed directly (arrays, pointers, structs)

–  Read/write capable
� Images

–  Opaque objects (2D or 3D)
–  Can only be accessed via read_image() and

write_image()

–  Can either be read or written in a kernel, but
not both

Context

Uninitialized OpenCL buffers - original
data will be transferred to/from these objects

Original input/output data
(not OpenCL memory objects)

11 | ICPE Tutorial | April 2012

MEMORY OBJECTS

� Memory objects are associated with a context

–  They must be explicitly copied to a device prior
to execution (covered next)

� cl_mem_flags specify:

� Combination of reading and writing allowed on data
� If the host pointer itself should be used to store the

data

� If the data should be copied from the host pointer

Context

Uninitialized OpenCL buffers - original
data will be transferred to/from these objects

Original input/output data (not
OpenCL memory objects)

12 | ICPE Tutorial | April 2012

TRANSFERRING DATA

� OpenCL provides commands to transfer data to and
from devices

–  clEnqueue{Read|Write}{Buffer|Image}

� Objects are transferred to devices by specifying an
action (read or write) and a command queue

–  Data moved from host array into OpenCL buffer

–  Validity of objects on multiple devices is
undefined by the OpenCL spec (i.e. are vendor
specific)

Context

Written to device

Images are redundant show that they are part
of the context and physically on the device

13 | ICPE Tutorial | April 2012

TRANSFERRING DATA

� This command initializes the OpenCL memory object and writes data to the device associated with the
command queue

–  The command will write data from a host pointer (ptr) to the device

� The blocking_write parameter specifies whether or not the command should return before the data transfer
is complete

� Events can specify which commands should be completed before this one runs

14 | ICPE Tutorial | April 2012

PROGRAMS AND KERNELS

� A program object is basically a collection of OpenCL
kernels

–  Can be source code (text) or precompiled binary

–  Can also contain constant data and auxiliary
functions

� Creating a program object requires either reading in a
string (source code) or a precompiled binary

–  A program object is created by selecting which
devices to target

Context

OpenCL Program p

15 | ICPE Tutorial | April 2012

CREATING A PROGRAM

� This function creates a program object from strings of source code

–  count specifies the number of strings
–  The user must create a function to read in the source code to a string

–  Programmer can pass in compiler flags (optional)
� The lengths fields are used to specify the string lengths

16 | ICPE Tutorial | April 2012

BUILDING A PROGRAM

� This function compiles and links an executable from the program object for each device in the context

–  Program is compiled for each device
–  If device_list is supplied, then only those devices are targeted

� Optional preprocessor, optimization, and other options can be supplied by the options argument

� Compilation failure is determined by an error value returned from clBuildProgram()
� clGetProgramBuildInfo() with the program object and the parameter CL_PROGRAM_BUILD_STATUS

returns a string with the compiler output

17 | ICPE Tutorial | April 2012

CREATING A KERNEL

� A kernel is a function declared in a program that is
executed on an OpenCL device

–  A kernel object is a kernel function along with its
associated arguments

–  A kernel object is created from a compiled
program object by specifying the name of the
kernel function

–  The kernel is created is specified by a string that
matches the name of the function within the
program

� Must explicitly associate arguments (memory
objects, primitives, etc.) with the kernel object

Context

Kernels s

18 | ICPE Tutorial | April 2012

SUMMARIZING RUNTIME COMPILATION

� Runtime compilation is necessary due to the range of devices from different vendors

� There is a high overhead for compiling programs and creating kernels
–  Each operation only has to be performed once (at the beginning of the program)

–  The kernel objects can be reused any number of times by setting different arguments

clCreateProgramWithSource()

clCreateProgramWithBinary()

clBuildProgram() clCreateKernel()

Read source code
into char array

19 | ICPE Tutorial | April 2012

PROGRAMMING MODEL

�  Data parallel

–  One-to-one mapping between work-items and elements in a memory object
–  Work-groups can be defined explicitly (like CUDA) or implicitly (specify the number of work-items and

OpenCL creates the work-groups)

�  Task parallel
–  Kernel is executed independent of an index space

–  Other ways to express parallelism: enqueueing multiple tasks to the device,

20 | ICPE Tutorial | April 2012

A SCALABLE THREAD STRUCTURE

� Each thread is responsible for adding the indices corresponding to its ID

� Each instance of a kernel is called a work-item (though “thread” is commonly used as well)
� Work-items are organized as work-groups

–  Work-groups are independent from one-another (this is where scalability comes from)

Thread structure:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A

B

C
=

+

Vector Addition:

1
4

1
5

1
2

1
3

1
0

1
1 8 9 6 7 4 5 2 3 0 1

0 000000000 1 1111111 2 22222222 33 333333 44 4444444 5555 5555 666666 666 7777777 77 888888 8 99999999 1011000000

00

1111111111

11

12122222

22

1333333

33

144444444

44

1555555555

55

21 | ICPE Tutorial | April 2012

THREAD STRUCTURE

� An index space defines a hierarchy of work-groups and work-items

� Work-items can uniquely identify themselves based on:
–  A global id (unique within the index space)

–  A work-group ID and a local ID within the work-group

22 | ICPE Tutorial | April 2012

MEMORY MODEL

Memory� Description�

Global� Accessible by all work-items�

Constant� Read-only, global�

Local� Local to a work-group�

Private� Private to a work-item�

� The OpenCL memory model is closely related
to a real GPU memory hierarchy

SIMD Engine
LDS, Registers

Compute Unit to Memory X-bar

Global Memory

L1 Cache

L2 Cache Write Cache

Atomic Path

23 | ICPE Tutorial | April 2012

THE OPENCL KERNEL�FINALLY

� Memory Space Qualifiers

__global – memory allocated from global space
__constant – a special type of read-only memory

__local – memory shared by a work-group
__private – private per work-item memory

__read_only /__write_only – used for images

� Kernel arguments that are memory objects must be
global, local, or constant

� Kernels execute asynchronously from the host

� Synchronization
–  Between items in a work-group

–  Between commands in a command queue

//Simple vector addition kernel:

__kernel
void vecadd(__global int* A,
 __global int* B,
 __global int* C)
{
 int tid = get_global_id(0);
 C[tid] = A[tid] + B[tid];
}

24 | ICPE Tutorial | April 2012

MEMORY MODEL

� Memory management is explicit

–  Must move data from host to device global
memory, from global memory to local memory,
and back

� Work-groups are assigned to execute on compute-
units

–  No guaranteed communication/coherency
between different work-groups

� Memory is made up of banks

–  Memory banks are the hardware units that
actually store data

0

1

2

3

4

5

6

7

Memory Bank

0

1

2

3

4

5

6

7

Thread

25 | ICPE Tutorial | April 2012

SETTING KERNEL ARGUMENTS

� Each call provides the index of the argument as in the function signature, size, and a pointer to the data

� Examples:
–  clSetKernelArg(kernel, 0, sizeof(cl_mem), (void*)&d_iImage);

–  clSetKernelArg(kernel, 1, sizeof(int), (void*)&a);
� CUDA avoids this by using a preprocessor

Context

Kernels args are set

* Step 8

26 | ICPE Tutorial | April 2012

EXECUTING THE KERNEL

� A thread structure defined by the index-space that
is created

–  Each thread executes the same kernel on
different data

Context

An index space of threads is
created (dimensions match
the data)

27 | ICPE Tutorial | April 2012

COPYING DATA BACK

� The last step is to copy the data back from the
device to the host

� Similar call as writing a buffer to a device, but
data will be transferred back to the host

Context

Copied back
from GPU

28 | ICPE Tutorial | April 2012

BIG PICTURE

29 | ICPE Tutorial | April 2012

EXAMPLE 1 - IMAGE ROTATION

� A common image processing routine

� Applications in matching, alignment, etc.
� New coordinates of point (x1,y1) when rotated by an

angle Θ around (x0,y0)

� By rotating the image about the origin (0,0) we get

� Each coordinate for every point in the image can be
calculated independently

x2 = cos(θ) * (x1 − x0) − sin(θ) * (y1 − y0) + x0
y2 = sin(θ) * (x1 − x0) + cos(θ) * (y1 − y0) + x0

x2 = cos(θ) * (x1) − sin(θ) * (y1)
y2 = sin(θ) * (x1) + cos(θ) * (y1)

Original Image

Rotated Image (90o)

30 | ICPE Tutorial | April 2012

IMAGE ROTATION

� Input: To copy to device

–  Image (2D Matrix of floats)
–  Rotation parameters

–  Image dimensions
� Output: From device

–  Rotated Image
� Main Steps

–  Copy image to device by enqueueing a write to a
buffer on the device from the host

–  Run the Image rotation kernel on input image

–  Copy output image to host by enqueueing a read
from a buffer on the device

31 | ICPE Tutorial | April 2012

THE OPENCL KERNEL

� Parallel portion of the algorithm off-loaded to device

–  Most thought provoking part of coding process
� Steps to be done in Image Rotation kernel

–  Obtain coordinates of work item in work group
–  Read rotation parameters

–  Calculate destination coordinates
–  Read input and write rotated output at calculated coordinates

� Parallel kernel is not always this obvious.
–  Profiling is often necessary to find the bottlenecks and locate the data parallelism

–  In this example grid of output image decomposed into work items
–  Not all parts of the input image copied to the output image after rotation, corners of I/P image could be

lost after rotation

32 | ICPE Tutorial | April 2012

OPENCL KERNEL

__kernel void image_rotate(
 __global float * src_data, __global float * dest_data, //Data in global memory
 int W, int H, //Image Dimensions
 float sinTheta, float cosTheta) //Rotation Parameters
{
 //Thread gets its index within index space
 const int ix = get_global_id(0);
 const int iy = get_global_id(1);

 //Calculate location of data to move into ix and iy – Output decomposition as mentioned
 float xpos = (((float) ix)*cosTheta + ((float)iy)*sinTheta);
 float ypos = (((float) iy)*cosTheta - ((float)ix)*sinTheta);

 if ((((int)xpos>=0) && ((int)xpos< W))) //Bound Checking

 && (((int)ypos>=0) && ((int)ypos< H)))
 {
 //Read (xpos,ypos) src_data and store at (ix,iy) in dest_data
 dest_data[iy*W+ix] = src_data[(int)(floor(ypos*W+xpos))];
 }
}

33 | ICPE Tutorial | April 2012

STEP0: INITIALIZE DEVICE

� Declare context

� Choose a device from context

� Using device and context create a command queue

cl_context myctx = clCreateContextFromType(
 0, CL_DEVICE_TYPE_GPU,
 NULL, NULL, &ciErrNum);

cl_command_queue myqueue ;
myqueue = clCreateCommandQueue(

 myctx,
 device, 0, &ciErrNum);

ciErrNum = clGetDeviceIDs(
 0,CL_DEVICE_TYPE_GPU,
 1, &device, cl_uint *num_devices)

Query Platform

Query Devices

Command Queue

Create Buffers

Compile Program

Compile Kernel

Execute Kernel

Set Arguments

Devic

nd Q

Buffe

Pro

Ker

umen

Ker

P
la

tfo
rm

La

ye
r

R
un

tim
e

La
ye

r

C
om

pi
le

r

34 | ICPE Tutorial | April 2012

STEP1: CREATE BUFFERS

� Create buffers on device

� Input data is read-only
� Output data is write-only

� Transfer input data to the devicea

cl_mem d_ip = clCreateBuffer(myctx,
 CL_MEM_READ_ONLY, mem_size, NULL,
 &ciErrNum);

ciErrNum = clEnqueueWriteBuffer(
 myqueue , d_ip, CL_TRUE,
 0,mem_size, (void *)src_image,
 0, NULL, NULL)

cl_mem d_op = clCreateBuffer(myctx,
 CL_MEM_WRITE_ONLY, mem_size, NULL,
 &ciErrNum);

Query Platform

Query Devices

Command Queue

Create Buffers

Compile Program

Compile Kernel

Execute Kernel

Set Arguments

evic

nd Q

Buff

Pro

Ker

umen

Ker

P
la

tfo
rm

La

ye
r

R
un

tim
e

La
ye

r

C
om

pi
le

r

35 | ICPE Tutorial | April 2012

STEP2: BUILD PROGRAM, SELECT KERNEL

// Create the program
cl_program myprog= clCreateProgramWithSource

 (myctx,1, (const char **)&source,
 &program_length, &ciErrNum);

// Build the program
ciErrNum = clBuildProgram(myprog, 0, NULL,

 NULL, NULL, NULL);

// The “image_rotate” function as the kernel
cl_kernel mykernel = clCreateKerne(myprog ,

 “image_rotate” , error_code)

Query Platform

Query Devices

Command Queue

Create Buffers

Compile Program

Compile Kernel

Execute Kernel

Set Arguments

evic

nd Q

Buffe

e Pro

e Ke

umen

Ker

P
la

tfo
rm

La

ye
r

R
un

tim
e

La
ye

r

C
om

pi
le

r

36 | ICPE Tutorial | April 2012

// Set Arguments
clSetKernelArg(mykernel, 0, sizeof(cl_mem),

 (void *)&d_ip);
clSetKernelArg(mykernel, 1, sizeof(cl_mem),

 (void *)&d_op);
 clSetKernelArg(mykernel, 2, sizeof(cl_int),

 (void *)&W);

//Set local and global workgroup sizes
size_t localws[2] = {16,16} ;
//Assume divisible by 16
size_t globalws[2]={W, H};

// execute kernel
clEnqueueNDRangeKernel(myqueue , myKernel,

 2, 0, globalws, localws,
 0, NULL, NULL);

STEP3: SET ARGUMENTS, ENQUEUE KERNEL

// Set Arguments
clSetKernelArg(mykernel, 0, sizeof(cl_mem),

 (void *)&d_ip);
clSetKernelArg(mykernel, 1, sizeof(cl_mem),

(void *)&d_op);
clSetKernelArg(mykernel, 2, sizeof(cl_int),

(void *)&W);

//Set local and global workgroup sizes
size_t localws[2] = {16,16} ;
//Assume divisible by 16
size_t globalws[2]={W, H};

// execute kernel
clEnqueueNDRangeKernel(myqueue , myKernel,

2, 0, globalws, localws,
0, NULL, NULL);

Query Platform

Query Devices

Command Queue

Create Buffers

Compile Program

Compile Kernel

Execute Kernel

Set Arguments

evic

nd Q

Buffe

Pro

Ker

ume

e Ke

P
la

tfo
rm

La

ye
r

R
un

tim
e

La
ye

r

C
om

pi
le

r

37 | ICPE Tutorial | April 2012

STEP4: READ BACK RESULT

� Only necessary for data required on the host

� Data output from one kernel can be reused for
another kernel

� Avoid redundant host-device IO

// copy results from device back to host
clEnqueueReadBuffer(

 myctx, d_op,
 CL_TRUE, //Blocking Read Back
 0, mem_size,(void *) op_data,
 NULL, NULL, NULL);

Query Platform

Query Devices

Command Queue

Create Buffers

Compile Program

Compile Kernel

Execute Kernel

Set Arguments

evic

nd Q

Buffe

Pro

Ker

umen

Ker

P
la

tfo
rm

La

ye
r

R
un

tim
e

La
ye

r

C
om

pi
le

r

38 | ICPE Tutorial | April 2012

OPENCL TIMING

� OpenCL provides “events” which can be used for
timing kernels

� We pass an event to the OpenCL enqueue kernel
function to capture timestamps

� Code snippet provided can be used to time a
kernel

� Add profiling enable flag to create command
queue

� By taking differences of the start and end
timestamps we discount overheads like time
spent in the command queue

clGetEventProfilingInfo(event_time,
 CL_PROFILING_COMMAND_START,
 sizeof(cl_ulong),&starttime, NULL);

clGetEventProfilingInfo(event_time,
 CL_PROFILING_COMMAND_END,
 sizeof(cl_ulong), &endtime, NULL);

unsigned long elapsed =
(unsigned long)(endtime - starttime);

cl_event event_timer;
clEnqueueNDRangeKernel(myqueue ,

 myKernel,2, 0, globalws, localws,
 0, NULL, &event_timer);

unsigned long starttime, endtime;

39 | ICPE Tutorial | April 2012

OPENCL OPTIMIZATION - THREAD MAPPING

� Thread mapping determines which threads will access which data

–  Proper mappings can align with hardware and improve performance
–  Improper mappings can be disastrous to performance

� Using mappings, the same thread can be assigned to access different data
elements

–  Examples below show three different possible mappings of threads to
data (assuming the thread id is used to access an element)

0 1 2 3 0
4

1
5

2
6

3
7 4

8
5
9

6
10

7
11 8

12
9

13
10
14

11
15

Thread IDs

Mapping

int tid =
get_global_id(1) *
get_global_size(0) +
get_global_id(0);

0 4 8 12 0
1

4
5

8
9

12
13 1

2
5
6

9
10

13
14 2

3
6
7

10
11

14
15

int tid =
get_global_id(0) *
get_global_size(1) +
get_global_id(1);

0 1 4 5 0
2

1
3

4
6

5
7

8 9 12 13 8
10

9
11

12
14

13
15

int group_size =
get_local_size(0) *
get_local_size(1);

int tid =
get_group_id(1) *
get_num_groups(0) *
group_size +
get_group_id(0) *
group_size +
get_local_id(1) *
get_local_size(0) +
get_local_id(0)

*assuming 2x2 groups

40 | ICPE Tutorial | April 2012

THREAD MAPPING

� Consider a serial matrix multiplication algorithm

� This algorithm is suited for output data decomposition

–  We will create NM threads - effectively removing the outer two loops
–  Each thread will perform P calculations - The inner loop will remain as part of the kernel

� Should the index space be MxN or NxM?

41 | ICPE Tutorial | April 2012

THREAD MAPPING

� Thread mapping 1: with an MxN index space, the kernel would be:

� Thread mapping 2: with an NxM index space, the kernel would be:

� Both mappings produce functionally equivalent versions of the program

42 | ICPE Tutorial | April 2012

THREAD MAPPING

� This figure shows the execution of the two thread
mappings on NVIDIA GeForce 285 and 8800
GPUs

� Notice that mapping 2 is far superior in
performance for both GPUs

43 | ICPE Tutorial | April 2012

SO FAR

� We know how to optimize a program in OpenCL by taking advantage of the underlying architecture

� We have seen how to utilize threads to hide latency

� We have also seen how to take advantage of the different memory spaces available in today’s GPUs.

44 | ICPE Tutorial | April 2012

N-BODY ALGORITHMS

� The gravitational attraction between two bodies in space
is an example of an N-body problem

–  Body represents a galaxy / star, and bodies attract
each other through gravitational force

–  Bodies attract each other through force (F)
� O(N2) algorithm: N*N interactions need to be calculated

� All-pairs technique is used to calculate close-field forces

F = G *
mi * m j

|| rij ||2
⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ *

rij
|| rij ||

F = Resultant Force Vector between particles i and j
G = Gravitational Constant
mi = Mass of particle i
m j = Mass of particle j

rij = Distance of particle i and j

For each particle this becomes

Fi = (G * mi) *
m j

|| rij ||2
*

rij
|| rij ||

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

j=1→N

∑

for(i=0; i<n; i++) {
 ax = ay = az = 0;
 // Loop over all particles "j”
 for (j=0; j<n; j++) {

 //Calculate Displacement

 dx=x[j]-x[i];
 dy=y[j]-y[i];
 dz=z[j]-z[i];

 // small eps is delta added for dx,dy,dz = 0
 invr= 1.0/sqrt(dx*dx+dy*dy+dz*dz +eps);
 invr3 = invr*invr*invr;
 f=m[j]*invr3;

 // Accumulate acceleration
 ax += f*dx;
 ay += f*dy;
 az += f*dx;

 }
 // Use ax, ay, az to update particle posit ions
}

45 | ICPE Tutorial | April 2012

N-BODY ALGORITHMS

� For large counts, the N2 method calculates of force
contribution of distant particles

–  Distant particles hardly affect resultant force

� Algorithms like Barnes Hut reduce number of
particle interactions calculated

–  Nearby cells treated individually

–  Distant cells treated as a single large particle
� We restrict ourselves to a simple all pair simulation

of particles with gravitational forces

–  Near field still uses all pairs
–  So, implementing all pairs improves both near

and far field calculations

� Volume divided into cubic cells in an octree

� A octree is a tree where a node has exactly 8
children

� Used to subdivide a 3D space

46 | ICPE Tutorial | April 2012

PARALLEL IMPLEMENTATION

� Embarrassingly parallel algorithm

� Forces of each particle can be computed
independently

� Accumulate results in local memory

� Add accumulated results to previous position of
particles

� New position used as input to the next time step to
calculate new forces acting between particles

N

N

Force between all
particles

NNNNNNNNNNNN

Resultant force
– per particle

N = No. of particles in system

s per part

Next Iteration

47 | ICPE Tutorial | April 2012

NAÏVE PARALLEL IMPLEMENTATION

� Disadvantages of implementation where each
work item reads data independently

� No reuse since redundant reads of parameters for
multiple work-items

� Memory access= N reads*N threads= N2
� Similar to naïve non blocking matrix multiplication

__kernel void nbody(
 __global float4 * initial_pos,
 __global float4 * final_pos,
 Int N, __local float4 * result) {

 int localid = get_local_id(0);
 int globalid = get_global_id(0);
 result [localid] = 0;

 for(int i=0 ; i<N;i++) {
 //! Calculate interaction between
 //! particle globalid and particle i
 GetForce(globalid, i, initial_pos, final_pos,

 &result [localid]) ;
 }
 finalpos[globalid] = result[localid];
}

p items /
workgroup

N = No. of particles
All N particles read in by each work item

48 | ICPE Tutorial | April 2012

LOCAL MEMORY OPTIMIZATIONS

� Data Reuse

–  Any particle read into compute unit can be
used by all p bodies

� Computational tile:

–  Square region of the grid of forces consisting
of size p

–  2p forces required to evaluate all p2
interactions in tile

� p work items (in vertical direction) read in p forces

� Interactions on p bodies captured as an update to
p acceleration vectors

� Intra-work group synchronization shown in orange
required since all work items use data read by
each work item

p

p items per
workgroup

p forces read into local memory

p

p

tile0 tile1

p

tile N/p

p

tile0 tile1

p

tile N/p t
p

p

p p
N

/p
 w

or
k

gr
ou

ps

49 | ICPE Tutorial | April 2012

OPENCL IMPLEMENTATION

� Data reuse using local memory

–  Without reuse N*p items read per work group
–  With reuse p*(N/p) = N items read per work

group

� All work items use data read in by each work item
–  SIGNIFICANT improvement: p is work group

size (at least 128 in OpenCL, discussed in
occupancy)

–  Loop nest shows how a work item traverses all
tiles

–  Inner loop accumulates contribution of all
particles within tile

for (int i = 0; i < numTiles; ++i) {
 // load one tile into local memory
 int idx = i * localSize + tid;
 localPos[tid] = pos[idx];

 barrier(CLK_LOCAL_MEM_FENCE);

 // calculate acceleration effect due to each body
 for(int j = 0; j < localSize; ++j) {
 // Calculate acceleration caused by particle j on i
 float4 r = localPos[j] – myPos;

 float distSqr = r.x * r.x + r.y * r.y + r.z * r.z;
 float invDist = 1.0f / sqrt(distSqr + epsSqr);

 float s = localPos[j].w * invDistCube;

 // accumulate effect of all particles
 acc += s * r;
 }
 // Synchronize so that next tile can be loaded
 barrier(CLK_LOCAL_MEM_FENCE);
 }
}

50 | ICPE Tutorial | April 2012

PERFORMANCE

� Effect of optimizations compared for two GPU platforms

–  Exactly same code, only recompiled for platform
� Devices Compared

–  AMD GPU 5870
–  Nvidia GPU GTX 480

� Time measured for OpenCL kernel using OpenCL event counters
–  Device IO and other overheads like compilation time are not relevant to our discussion of optimizing a

compute kernel

–  Events are provided in the OpenCL spec to query obtain timestamps for different state of OpenCL
commands

51 | ICPE Tutorial | April 2012

EFFECT OF REUSE ON KERNEL PERFORMANCE

0
20
40
60
80

100
120
140
160
180

2k 4k 8k 10k 16k 32k

TI
m

e
(m

s)

No of Particles

Execution Time – Non Reuse

0

20

40

60

80

100

120

140

160

180

2k 4k 8k 10k 16k 32k
No of Particles

Execution Time – Reuse

Nvidia - GPU
AMD - GPU

52 | ICPE Tutorial | April 2012

PERFORMANCE - LOOP UNROLLING

� We also attempt loop unrolling of the reuse local memory implementation

–  We unroll the innermost loop within the thread
� Loop unrolling can be used to improve performance by removing overhead of branching

–  Beneficial only for tight loops where branching overhead is comparable to the size of the loop body
–  Experiment on optimized local memory implementation

–  Executable size is not a concern for GPU kernels
� We implement unrolling by factors of 2 and 4 and we see substantial performance gains across platforms

–  Decreasing returns for larger unrolling factors seen

53 | ICPE Tutorial | April 2012

EFFECT OF UNROLL ON KERNEL PERFORMANCE

0

20

40

60

80

100

120

140

160

180

8k 16k 32k

K
er

ne
l T

im
e

(m
s)

No of Particles

Execution Time – Unrolled Kernels – with data reuse

Nvidia - GPU

AMD - GPU

Nvidia - GPU - U2

AMD - GPU - U2

Nvidia - GPU - U4

AMD - GPU - U4

U# in legend denotes unroll factor

54 | ICPE Tutorial | April 2012

int main(void) {
try {
 cl::Context context (CL_DEVICE_TYPE_GPU, 0, NULL, NULL, &err);
 cl::vector<cl::Device> devices = context.getInfo<CL_CONTEXT_DEVICES>();
 cl::Program::Sources source(1, std::make_pair(helloStr,strlen(helloStr)));
 cl::Program program_ = cl::Program(context, source);
 program_.build(devices);
 cl::Kernel kernel(program_, "hello", &err);
 cl::CommandQueue queue(context, devices[0], 0, &err);
 cl::KernelFunctor func = kernel.bind(queue, cl::NDRange(4, 4),
 cl::NDRange(2, 2));
 func().wait();
}
catch (cl::Error err) {
 std::cerr << "ERROR: " << err.what() << "(" << err.err() << ")“ <<
 std::endl;
}
return EXIT
}

OPENCL C++ API

� C++ Bindings provide

–  Abstractions
–  Object oriented progamming

–  Templates
� Lightweight, providing access to the

low-level features of the original
OpenCL™ C API

� Compatible with standard C++
compilers (GCC 4.x and VS 2008)

55 | ICPE Tutorial | April 2012

EXTENSIONS TO OPENCL

� An OpenCL Extension is a feature, which might be supported by a device but is not a part of the OpenCL
specification

–  Extensions allow vendors to expose device specific features without being concerned about
compatibility with specification and other vendor features

� Check clGetDeviceInfo with CL_DEVICE_EXTENSIONS

� Atomic functions to global and local memory

–  add, sub, xchg, inc, dec, cmp_xchg, min, max, and, or, xor
–  32-bit/64-bit integers

� Byte Addressable Stores
� Device Fission – Allows splitting up a compute device into multiple subdevices

� Media operations

#pragma OPENCL EXTENSION extension_name : enable

56 | ICPE Tutorial | April 2012

APPROACHES TO MULTIPLE DEVICES

� Single context, multiple devices

–  Standard way to work with multiple devices in OpenCL
–  Associating specific devices with a context is done by passing a list of the desired devices to
clCreateContext()

–  The call clCreateContextFromType() takes a device type (or combination of types) as a
parameter and creates a context with all devices of that type:

� Multiple contexts, multiple devices - Computing on a cluster, multiple systems, etc.

57 | ICPE Tutorial | April 2012

SINGLE CONTEXT, MULTIPLE DEVICES

� When multiple devices are part of the same context,
most OpenCL objects are shared

–  Memory objects, programs, kernels, etc.

� One command queue must exist per device and is
supplied in OpenCL when the target GPU needs to be
specified

–  Any clEnqueue* function takes a command queue
as an argument

Context

58 | ICPE Tutorial | April 2012

SINGLE CONTEXT, MULTIPLE DEVICES

� Memory objects are common to a context, they must be explicitly written to a device before being used

–  Whether or not the same object can be valid on multiple devices is vendor specific
� OpenCL does not assume that data can be transferred directly between devices, so commands only exists

to move from a host to device, or device to host

–  Copying from one device to another requires an intermediate transfer to the host

Context

0) Object starts on device 0

1) clEnqueueRead*(cq0, ...)
copies object to host

3) clEnqueueWrite*(cq1, ...)
copies object to device 1

2) Object now valid on host

4) Object ends up on device 1

.))

2) Object now valid

TWO PCIe DATA TRANSFERS
ARE REQUIRED

59 | ICPE Tutorial | April 2012

SINGLE CONTEXT, MULTIPLE DEVICES

� The behavior of a memory object written to multiple devices is vendor-specific

� OpenCL does not define if a copy of the object is made or whether the object remains valid once written to
a device

� A CPU would operate on a memory object in-place, while a GPU would make a copy (so the original would
still be valid until it is explicitly written over)

� AMD/NVIDIA implementations allow an object to be copied to multiple devices

–  Programmer responsible for maintaining updated copy and merging data

Context

clEnqueueWrite*(cq0, ...) clEnqueueWrite*(cq1, ...)

When writing data to a GPU, a copy is
made, so multiple writes are valid

60 | ICPE Tutorial | April 2012

SINGLE CONTEXT, MULTIPLE DEVICES

� Just like writing a multi-threaded CPU program, we have two choices for designing multi-GPU programs

1.  Redundantly copy all data and index using global offsets

2.  Split the data into subsets and index into the subset

A0

A A

0 1 2 3 Threads 4 5 6 7

0 1 2 3 Threads

0 1 2

A

3 4 5 6 7

A

0

A

1

A0

2 3

A1

0 1 2 3 0

A

1

A1

2 3

GPU 0 GPU 1

GPU 0 GPU 1

61 | ICPE Tutorial | April 2012

SINGLE CONTEXT, MULTIPLE DEVICES

� OpenCL provides mechanisms to help with both multi-device techniques

–  clEnqueueNDRangeKernel() optionally takes offsets that are used when computing the global ID
of a thread
� Note that for this technique to work, any objects that are written to will have to be synchronized manually

–  SubBuffers were introduced in OpenCL 1.1 to allow a buffer to be split into multiple objects
� This allows reading/writing to offsets within a buffer to avoid manually splitting and recombining data

� OpenCL events are used to synchronize execution on different devices within a context
� clEnqueue* function generates an event that identifies the operation

� clEnqueue* functions also take an optional list of events that must complete before that operation should
occur

� clEnqueueWaitForEvents() is the specific call to wait for a list of events to complete

62 | ICPE Tutorial | April 2012

SYNCHRONIZATION BETWEEN COMMAND QUEUES

� individual queue can execute in order or out of
order

–  In-order queue, all commands execute in order

–  Behaves as expected (as long as you’re
enqueuing from one thread)

� Multiple Queues

–  You must explicitly synchronize between
queues

–  Multiple devices each have their own queue

�  Use events to synchronize

� clWaitForEvents(num_events, *event_list)

–  Blocks until events are complete
� clEnqueueMarker(queue, *event)

–  Returns an event for a marker that moves
through the queue

� clEnqueueWaitForEvents(queue, num_events,
*event_list)

–  Inserts a “WaitForEvents” into the queue

63 | ICPE Tutorial | April 2012

MULTIPLE CONTEXTS, MULTIPLE DEVICES

� An alternative approach is to create multiple OpenCL contexts (with associated objects) per device

� Distributed programming
–  If a framework such as MPI is used for communication, programs can be ran on multi-device machines

or in distributed environments

–  Host libraries (e.g., pthreads, MPI) must be used for synchronization and communication
� In addition to PCI-Express transfers required to move data between host and device, extra memory and

network communication may be required

rial | April 2012

Context Context
Communicate using host-based libraries

64 | ICPE Tutorial | April 2012

PROGRAMMING SHARED MEMORY HETEROGENEOUS DEVICES

� Memory space subdivided into “System Memory” and
“Local Memory”

–  Local memory: regions optimized for high
bandwidth GPU accesses, driver managed

� Unified North Bridge arbitrates access
� clCreateBuffer calls allocate memory in either “System

Memory” or “Local Memory”

–  Memory region defined by cl_mem_flags parameter
� Llano APUs provides different performance for each

device based on regions used

–  To access Local memory from CPU

MEMORY SYSTEM ON FUSION APUS -
Pierre Boudier & Graham Sellers.
AMD Fusion Developer Summit 2011

clCreateBuffer(myctx,
CL_MEM_READ_ONLY|CL_MEM_USE_PERSISTENT_MEM_AMD,
mem_size, NULL, &ciErrNum);

65 | ICPE Tutorial | April 2012

PROGRAMMING SHARED MEMORY HETEROGENEOUS DEVICES

clCreateBuffer(myctx,
CL_MEM_READ_ONLY |
CL_MEM_ALLOC_HOST_PTR,
mem_size, NULL, &ciErrNum);

clCreateBuffer(myctx,
CL_MEM_READ_WRITE |
CL_MEM_ALLOC_HOST_PTR,
mem_size, NULL, &ciErrNum);

GPU / CPU access to uncached system memory GPU access to cached system memory

66 | ICPE Tutorial | April 2012

OPENCL V1.2 - DIFFERENCES

� Device partitioning:

–  Partition a device into sub-devices so that work groups can be allocated to individual compute units.
–  Useful for reserving areas of the device to reduce latency for time-critical tasks.

� Separate compilation and linking of objects:
–  Functionality to compile OpenCL into external libraries for inclusion into other programs.

� Enhanced image support:
–  Support for 1D images and 1D/2D image arrays.

–  Extensions allow for OpenGL textures and arrays to be used to create OpenCL images
� Built-in kernels:

–  Custom devices that contain unique functionality are now integrated more closely into OpenCL
–  Kernels can be called to use specialised or non-programmable aspects of underlying hardware.

–  Examples include, video encoding/decoding, and digital signal processors.
� DirectX functionality: DX9 media surface sharing allows for efficient sharing between OpenCL and DX9

67 | ICPE Tutorial | April 2012

CONCLUSIONS ON HETEROGENEOUS COMPUTING

� Targeting heterogeneous devices (e.g., CPUs and
GPUs at the same time) requires awareness of their
different performance characteristics for an application

� Scheduling overhead

–  What is the startup time of each device?
� Location of data

–  Which device is the data currently resident on?
–  Data must be transferred across the PCI-Express

bus

� Subdivision granularity of workloads across devices ?
–  Too large may execute slowly on a device, stalling

overall completion

–  Too small may be dominated by startup overhead

Context

CPUs GPUs

Overhead Low High (depending on data)

Performance Variable High

68 | ICPE Tutorial | April 2012

RELEVANT RESOURCES FOR OPENCL

� Books

–  Heterogenous Computing with OpenCL
–  OpenCL Programming Guide

� Tutorial on Fusion Memory model
–  MEMORY SYSTEM ON FUSION APUS - Pierre Boudier & Graham Sellers. AMD Fusion

Developer Summit 2011

� Webinars. Lectures
–  AMD OpenCL University Toolkit

–  http://developer.amd.com/zones/OpenCLZone/Events/pages/
OpenCLWebinars.aspx

� Debugging

–  GDEbugger - Windows Only
� Systems to test

–  NUCAR provides systems to test and run OpenCL code. Contact Prof. Kaeli

THANK YOU !!

QUESTIONS ? COMMENTS ?

Perhaad Mistry
pmistry@ece.neu.edu

